منابع مشابه
Some extensions on Fan Ky ’ s inequality
In this paper we study the inequalities of the determinants of the positive definite matrices and the invertible matrices by applying the integral method and matrix theory such that extensions of Fan Ky’s inequality are established. And then an improvement of Fan Ky’s inequality is given by using the positive definiteness of Gram matrix. Mathematics Subject Classification (2010): 15A15, 26D15.
متن کاملOn generalized Hermite-Hadamard inequality for generalized convex function
In this paper, a new inequality for generalized convex functions which is related to the left side of generalized Hermite-Hadamard type inequality is obtained. Some applications for some generalized special means are also given.
متن کاملOn a generalized Wirtinger inequality
Let α (p, q, r) = inf (ku0kp kukq : u ∈W 1,p per (−1, 1) \ {0} , Z 1 −1 |u|r−2 u = 0 ) . We show that α (p, q, r) = α (p, q, q) if q ≤ rp+ r − 1 α (p, q, r) < α (p, q, q) if q > (2r − 1) p generalizing results of Dacorogna-Gangbo-Subía and others. 1 The main result In the present article we discuss the following minimization problem α (p, q, r) = inf ( kukp kukq : u ∈W 1,p per (−1, 1) \ {0} , Z...
متن کاملOn Generalized Holder Inequality
A FAMILY of inequalities concerning inner products of vectors and functions began with Cauchy. The extensions and generalizations later led to the inequalities of Schwarz, Minkowski and Holder. The well known Holder inequality involves the inner product of vectors measured by Minkowski norms. In this paper, another step of extension is taken so that a Holder type inequality may apply to general...
متن کاملA Generalized Singular Value Inequality for Heinz Means
In this paper we will generalize a singular value inequality that was proved before. In particular we obtain an inequality for numerical radius as follows: begin{equation*} 2 sqrt{t (1-t)} omega(t A^{nu}B^{1-nu}+(1-t)A^{1-nu}B^{nu}) leq omega(t A + (1- t) B), end{equation*} where, $ A $ and $ B $ are positive semidefinite matrices, $ 0 leq t leq 1 $ and $ 0 leq nu leq frac{3}{2}.$
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1984
ISSN: 0024-3795
DOI: 10.1016/0024-3795(84)90214-3